Part Number Hot Search : 
4620D 74ACTQ04 C2500 24C02A PC2508W TC4066BF 1N4752AE SC162
Product Description
Full Text Search
 

To Download AMMC-5033 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  description agilent?s ammc- 5033 is a mmic power amplifier designed for use in wireless transmitters that operate within 17.7 ghz to 32 ghz range. at 25 ghz, it provides 27 dbm of output power (p- 1db) and 20 db of small- signal gain from a small easy- to- use device. the device has input and output matching circuitry for use in 50 ? environments. the ammc- 5033 also integrates a temperature compensated rf power detection circuit that enables power detection of 0.1v/w at 22 ghz. note: these devices are esd sensitive. the fo llowing precautions are strongly recommended: ensure that an esd approved carrier is used when dice are transported from one destination to another. personal grounding is to be worn at all times when handling these devices. agilent AMMC-5033 17.7 ? 32 ghz power amplifier data sheet features ? wide frequency range: 17.7 - 32 ghz  high power: p-1db @ 25 ghz = 27 dbm  high gain: 20 db  return loss: input: -13 db, output: - 20 db  integrated rf power detector applications  designed for use in transmitters that operate in various frequency bands between 17.7 ghz and 32 ghz.  can be driven by the ammc-5040 (20-40 ghz) or the ammc-5618 (6- 20 ghz) mmic amplifiers, increasing the power handling capability of transm itters requiring linear operation. AMMC-5033 absolute maximum ratings [1] symbol parameters/conditions units min. max. v d 1,2 positive drain voltage v 7 v g1, v gg gate supply voltage v -3 0.5 det bias applied detector bias (optional) v 7 i d1 first stage drain current ma 320 i d2 second stage drain current ma 640 p in cw input power dbm 23 t ch operating channel temp. c+150 t stg storage case temp. c-65+150 t max maximum assembly temp (60 sec max) c+300 note: 1. operation in excess of any one of these conditions may result in permanent damage to this device. chip size: 2730 x 1300 m (108 x 51.6 mils) chip size tolerance: 10 m ( 0.4 mils) chip thickness: 100 10 m (4 0.4 mils) pad dimensions: 80 x 80 m (2.95 0.4 mils)
2 AMMC-5033 dc specifications/physical properties [1] AMMC-5033 rf specifications [4, 5] tb = 25 c, v d1 = 3.5 v, v d2 = 5 v, i d1 (q) = 280 ma, i d2(q) = 500 ma, zo = 50 ? symbol parameters and test conditions units min. typ. max. i d1 first stage drain supply current (v d1 =3.5 v, v g1 =open, v gg set for i d2 ty p i c a l ) ma 280 320 i d2 second stage drain supply current (v d2 =5 v, v g1 =open, v gg set for i d2 ty p i c a l ) v 500 v gg gate supply operating voltage (i d1(q) + i d2(q) = 780 (ma)) v -0.75 -0.6 -0.4 det bias detector bias voltage (optional) v vd2 1(ch-bs) first stage thermal resistance [2] (backside temperature, tb = 25 c) c/w 31 2(ch-bs) second stage thermal resistance [2, 3] (backside temperature, tb = 25 c) c/w 19 notes: 1. backside temperature t b =25 c unless otherwise noted. 2. channel-to-backside thermal resistance ( ch-b) = 42c/w at tchannel (tc) = 150c as measured using infrared microscopy. thermal resistance at backside temperature (tb) = 25c calculated from measured data. 3. channel-to-backside thermal resistance ( ch-b) = 24c/w at tchannel (tc) = 150c as measured using infrared microscopy. thermal resistance at backside temperature (tb) = 25c calculated from measured data. symbol parameters and test conditions unit lower band specifications (17.7 - 21 ghz) mid band specifications (21 - 26.5 ghz) upper band specifications (26.5 - 32 ghz) min. typ. max. min. typ. max. min. typ. max. gain small-signal gain [5] db 20 22 17.5 20 16.5 18.5 p -1db output power at 1db gain compression [6] db 23.5 25 25.5 27 25 26.5 p -3db output power at 3db gain compression [6] db 27 28 27 oip 3 output third order intercept point [6] ; ? f = 2 mhz; pin=+2 dbm dbm 27 29 29.5 32 29 32 rl in input return loss [5] db 11.5 13.5 11 13 11 13 rl out output return loss [5] db 14 20 14 19 15 22 isolation min. reverse isolation db 47 48 46 notes: 4. data measured in wafer form t b = 25 c. 5. 100% on-wafer rf test is done at frequency = 17.7, 21, 26.5 and 32 ghz. 6. 100% on-wafer test frequency =17.7, 26.5 and 32 ghz
3 AMMC-5033 typical performances (t b = 25 c, v d1 =3.5 v, i d1 = 280 ma, v d2 =5 v, i d2 = 500 ma z in = z out = 50 ? ) figure 1. gain and reverse isolation figure 2. return loss (input and output) figure 3. output power at 1 db and 3 db gain compression figure 4. noise figure figure 5. output 3rd order intercept point frequency (ghz) s21 (db) s12 ( db ) 17 19 21 23 25 27 29 31 33 40 35 30 25 20 15 10 5 0 0 -20 -40 -60 -80 s21 (db) s12 (db) frequency (ghz) return loss (db) 17 19 21 23 25 27 29 31 33 0 -5 -10 -15 -20 -25 -30 s22 (db) s11 (db) frequency (ghz) p-1 (dbm), p-3 (dbm) 17 19 21 23 25 27 29 31 33 30 28 26 24 22 20 p-1 p-3 frequency (ghz) noise figure (db) 17 19 21 23 25 27 29 31 33 10 8 6 4 2 0 frequency (ghz) ip3 (dbm) 17 19 21 23 25 27 29 31 33 38 36 34 32 30 28 26 24
4 AMMC-5033 typical performance curves (over temperature and voltage) figure 6. linear and log detector voltage and output power, freq=22 ghz, det_b=5 v figure 7. gain and v d2 voltage, v d1 =3.5 v (con- stant) figure 8. output power at 1 db gain compres- sion and v d2 voltage, v d1 = 3.5 v (constant) figure 9. return-loss with temperature figur e 10. output power at 1 db gain compres- sion and temperature figure 11. output power, pae, and total drain current versus inpu t power at 25 ghz figure 12. gain with temperature rf output power (dbm) (det _ r) - (det _ o) (v) (det r) (det o) (v) 05 30 10 15 20 25 0.10 0.08 0.06 0.04 0.02 0.00 0.1 0.01 0.001 frequency (ghz) gain (db) 17 19 21 23 25 27 29 31 33 40 30 20 10 0 5v/0.5a 4v/0.5 3.5v/0.5a frequency (ghz) p-1 (dbm) 17 19 21 23 25 27 29 31 33 30 28 26 24 22 20 5v/0.5a 4v/0.5 3.5v/0.5a frequency (ghz) s11 and s22 (db) 17 19 21 23 25 27 29 31 33 0 -5 -10 -15 -20 -25 -30 s11_85 c s11_25 c s11_-40 c s22_85 c s22_25 c s22_-40 c frequency (ghz) p-1 (dbm) 17 19 21 23 25 27 29 31 33 30 28 26 24 22 20 85 c 25 c -40 c pin (dbm) pout (dbm) , pae (%) id (ma) -30 -20 20 -10 0 10 30 25 20 15 10 5 0 1200 1000 800 600 400 200 0 pout pae id frequency (ghz) s21 (db) 17 19 21 23 25 27 29 31 33 50 40 30 20 10 0 -10 -20 -30 85 c 25 c -40 c
5 typical scattering parameters [1] (t b = 25 c, v d1 =3.5 v, i d1 = 280 ma, v d2 =5 v, i d2 = 500 ma z in = z out = 50 ? ) freq s11 s21 s12 s22 [ghz] db mag phase db mag phase db mag phase db mag phase 1 -10.7 0.29 173 -51.1 0.003 -163 -95.1 1.77e-05 128 -0.5 0.95 -26 2 -11.0 0.28 167 -70.1 0 79 -83.1 6.97e-05 76 -0.7 0.92 -51 3 -11.4 0.27 161 -46.6 0.005 -103 -74.5 1.89e-04 81 -1.2 0.87 -76 4 -12.1 0.25 153 -37.3 0.014 72 -74.5 1.88e-04 69 -2.2 0.78 -95 5 -15.3 0.17 140 -22.6 0.074 -31 -80.3 9.66e-05 -47 -2.4 0.76 -112 6 -12.2 0.25 149 -20.4 0.096 144 -80.1 9.90e-05 -126 -2.8 0.73 -130 7 -14.0 0.2 143 -20.5 0.095 79 -80.3 9.68e-05 94 -4.0 0.63 -146 8 -15.3 0.17 139 -25.4 0.053 -3 -74.1 1.97e-04 35 -4.2 0.62 -150 9 -17.6 0.13 138 -33.1 0.022 108 -81.4 8.52e-05 -62 -3.5 0.67 -166 10 -19.4 0.11 145 -18.9 0.113 54 -81.4 8.56e-05 -162 -3.8 0.64 177 11 -18.6 0.12 152 -18.2 0.123 -37 -81.3 8.59e-05 151 -4.4 0.6 161 12 -19.7 0.1 141 -29.0 0.035 -77 -74.6 1.86e-04 178 -5.2 0.55 146 13 -24.5 0.06 134 -15.4 0.169 103 -81.3 8.65e-05 -180 -6.3 0.48 131 14 -27.4 0.04 159 0.9 1.107 61 -81.2 8.70e-05 -20 -7.9 0.41 115 15 -30.6 0.03 -148 12.7 4.316 -8 -74.6 1.86e-04 152 -10.1 0.31 100 16 -24.1 0.06 -121 22.6 13.52 -87 -76.2 1.55e-04 144 -13.3 0.22 86 17 -21.2 0.09 -116 28.8 27.62 174 -74.7 1.84e-04 -164 -20.5 0.09 76 18 -18.0 0.13 -116 28.7 27.25 73 -64.8 5.75e-04 165 -20.0 0.1 133 19 -15.5 0.17 -123 26.4 20.92 3 -64.3 6.08e-04 123 -19.4 0.11 130 20 -14.0 0.2 -133 24.7 17.18 -53 -64.4 6.03e-04 90 -19.1 0.11 135 21 -13.3 0.22 -142 23.4 14.82 -103 -69.7 3.27e-04 76 -18.7 0.12 133 22 -13.0 0.22 -151 22.4 13.2 -151 -58.2 1.23e-03 80 -18.5 0.12 129 23 -12.9 0.23 -157 21.5 11.9 164 -63.3 6.80e-04 92 -19.0 0.11 124 24 -12.9 0.23 -163 20.8 10.97 121 -61.0 8.96e-04 44 -20.7 0.09 119 25 -13.0 0.23 -172 20.3 10.36 79 -66.1 4.97e-04 55 -21.8 0.08 122 26 -13.3 0.22 -178 19.9 9.895 37 -64.3 6.09e-04 53 -22.9 0.07 131 27 -13.9 0.2 174 19.7 9.691 -6 -63.1 7.00e-04 58 -22.9 0.07 135 28 -14.9 0.18 165 19.5 9.457 -49 -60.2 9.75e-04 68 -22.6 0.07 142 29 -15.8 0.16 155 19.4 9.384 -94 -61.9 8.00e-04 38 -22.1 0.08 136 30 -17.0 0.14 140 19.3 9.247 -141 -56.3 1.53e-03 25 -22.4 0.08 125 31 -19.1 0.11 113 19.1 8.972 171 -57.7 1.31e-03 15 -24.9 0.06 117 32 -21.0 0.09 75 18.6 8.519 121 -58.2 1.23e-03 1 -31.9 0.03 126 33 -20.5 0.1 30 18.1 7.989 69 -56.0 1.59e-03 -15 -31.4 0.03 -148 34 -17.0 0.14 -9 17.2 7.281 14 -57.7 1.31e-03 -12 -24.4 0.06 -141 35 -14.9 0.18 -31 16.2 6.44 -43 -59.0 1.12e-03 -36 -20.0 0.1 -145 36 -12.8 0.23 -45 14.6 5.378 -104 -60.8 9.14e-04 -40 -16.2 0.16 -152 37 -10.7 0.29 -58 12.1 4.014 -171 -62.9 7.13e-04 -31 -13.1 0.22 -167 38 -9.8 0.33 -71 7.7 2.42 122 -57.1 1.40e-03 -55 -11.1 0.28 174 39 -9.1 0.35 -77 1.9 1.238 65 -61.0 8.94e-04 -61 -10.1 0.31 154 40 -8.5 0.38 -85 -3.5 0.671 14 -60.9 9.04e-04 -59 -9.8 0.33 134 41 -8.6 0.37 -92 -9.2 0.347 -41 -67.6 4.15e-04 -65 -9.7 0.33 116 42 -8.6 0.37 -92 -16.1 0.157 -90 -59.2 1.09e-03 -82 -10.1 0.31 98 43 -8.0 0.4 -92 -23.2 0.069 -134 -61.0 8.95e-04 -75 -10.6 0.29 80 44 -7.6 0.42 -90 -32.0 0.025 -172 -62.0 7.96e-04 -59 -11.4 0.27 62 45 -6.0 0.5 -87 -31.7 0.026 -148 -64.6 5.91e-04 -123 -12.3 0.24 41 46 -4.4 0.6 -93 -40.7 0.009 -164 -61.1 8.84e-04 -82 -13.2 0.22 21 47 -3.5 0.67 -98 -46.2 0.005 62 -102.4 7.57e-06 -171 -14.2 0.2 0 48 -2.7 0.74 -102 -58.4 0.001 80 -60.1 9.93e-04 176 -14.8 0.18 -27 49 -1.8 0.81 -111 -46.4 0.005 50 -59.2 1.10e-03 -69 -14.7 0.18 -49 50 -1.7 0.83 -118 -44.2 0.006 113 -61.9 8.00e-04 26 -14.9 0.18 -77 note: 1. data obtained from on-wafer measurements.
6 biasing and operation the recommended quiescent dc bias condition for optimum efficiency, performance, and reliability is v d1 = 3.5 volts and v d2 = 5 volts with v gg set for i d1 + i d2 = 780 ma (no connection to v g1 ). this bias arrangement results in default quiescent drain currents i d1 = 280 ma, i d2 = 500 ma. a single dc gate supply connected to v gg will bias all gain stages. if operation with both v d1 and v d2 at 5 volts is desired, an additional wire bond connection from the v g1 pad to v gg external bypass chip capacitor (shorting v g1 to v gg ) will balance the current in each gain stage. v gg (= v g1 ) can be adjusted for i d1 +i d2 = 780 ma. muting can be accomplished by setting v g1 and /or v gg to the pinch- off voltage vp. an optional output power detector network is also provided. detector sensitivity can be adjusted by biasing the diodes with typically 1 to 5 volts applied to the det- bias terminal. simply connecting det- bias to the v d2 supply is a convenient method of biasing this detector network. the differential voltage between the det- ref and det- out pads can be correlated with the rf power emerging from the rf output port. the detected voltage is given by : v = (v ref ? v det ) - v ofs where v ref is the voltage at the det_ref port, v det is a voltage at the det_out port, and v ofs is the zero- input- power offset voltage. there are three methods to calculate v ofs : 1) v ofs can be measured before each detector measurement (by removing or switching off the power source and measuring v ref ? v det ). this method gives an error due to temperature drift of less than 0.0002 db/c. 2) v ofs can be measured at a single reference temperature. the drift error will be less than 0.25 db. 3) v ofs can either be characterized over temperature and stored in a lookup table, or it can be measured at two temperatures and a linear fit used to calculate v ofs at any temperature. this method gives an error close to method #1. with reference to figure 13, the rf input is dc coupled to a shunt 50 ? resistor but it is dc blocked to the input of the first stage. the rf output is dc blocked to the output of the second stage, however, it is dc coupled to the detector bias circuit. if the output detector is biased using the on- chip optional det- bias network, an external dc blocking capacitor may be required at the rf output port. no ground wires are needed since ground connections are made with plated through- holes to the backside of the device. assembly techniques the backside of the ammc- 5033 chip is rf ground. for microstripline applications, the chip should be attached directly to the ground plane (e.g., circuit carrier or heatsink) using electrically conductive epoxy [1] . for best performance, the topside of the mmic should be brought up to the same height as the circuit surrounding it. this can be accomplished by mounting a gold plated metal shim (same length and width as the mmic) under the chip, which is of the correct thickness to make the chip and adjacent circuit coplanar. the amount of epoxy used for chip and or shim attachment should be just enough to provide a thin fillet around the bottom perimeter of the chip or shim. the ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. the location of the rf bond pads is shown in figure 14. note that all the rf input and output ports are in a ground- signal- ground configuration. rf connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. a single bond wire is sufficient for signal connections, however double- bonding with 0.7 mil gold wire or the use of gold mesh [2] is recommended for best performance, especially near the high end of the frequency range. thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. gold mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 db for a duration of 76 8 ms. a guided wedge at an ultrasonic power level of 64 db can be used for the 0.7 mil wire. the recommended wire bond stage temperature is 150 2c. caution should be taken to not exceed the absolute maximum rating for assembly temperature and time. the chip is 100 m thick and should be handled with care. this mmic has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up die with vacuum on die center.) this mmic is also static sensitive and esd handling precautions should be taken. notes: 1. ablebond 84-1 lm1 silver epoxy is recommended. 2. buckbee-mears corporation, st. paul, mn, 800-262-3824
7 figure 13. AMMC-5033 schematic figure 14. AMMC-5033 bonding pad locations, dimensions in microns v d1 input rf _ 50 v d2 dq v gg v g1 250 1000 v d2 dq dq gnd gnd g vgg 50 50 50 out rf _ ref_ d 2 out det _ . bias det _ . ref det _ . d 1 gnd gnd figure 13. AMMC-5033 schematic. 805 1200 650 100 2730 2620 2200 1970 1615 735 280 125 2220 2450 2620 1990 1635 865 145 325 480 745 1300 1300 1010 565 390 100 0,0 gnd dq vd1 vgg vd2 dq det. out gnd rf out det. bios det. ref gnd dq vd2 vgg vg1 gnd rf input
www.agilent.com/semiconductors for product information and a complete list of distributors, please go to our web site. data subject to change. copyright 2003 agilent technologies, inc. january 27, 2005 5989-0531en figure 15. AMMC-5033 assembly diagram ordering information: AMMC-5033-w10 = waffle pack, 10 devi ces per tray AMMC-5033-w50 = waffle pack, 50 devi ces per tray 68 pf 68 pf AMMC-5033 rfi v d1 , 280 ma v d2 , 500 ma rfo rfinput rfoutput notes: 1. 1f capacitors on gate and drain lines not shown required. 2. the AMMC-5033 vd1 connection can be made at either the vd1 or vd1(optional) pads. if the vd1(optional) pad is used, the vd1 maximum voltage should be limited to 3.5 v. figure 15. AMMC-5033 assembly diagram. v d1 v gg v ee v d2 v d2


▲Up To Search▲   

 
Price & Availability of AMMC-5033

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X